Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Pharmaceutical Technology Europe ; 34(7):9-10,12,14, 2022.
Article in English | ProQuest Central | ID: covidwho-20243767

ABSTRACT

According to market research, the pharmaceutical packaging sector is expected to grow at a compound annual rate of 7.4% between 2022 and 2031, reaching an estimated USS178.8 billion (€171.8 billion) by the end of the forecast period (1). "Pharmaceutical waste continues to be a huge problem, so to eliminate non-biodegradable and single-use plastics from the supply chain, more research is taking place around bio-based PET [polyethylene terephthalate]. "By designing a product's primary and secondary packaging well from the outset (including investing ample resources into the process), manufacturers can reduce the amount of materials used and wasted, test new eco materials, ensure safety compliance and efficacy, and benefit from cheaper transportation costs," Quelch surmises. [...]pharma companies can benefit from a packaging supplier with a true global footprint," he says.

2.
Mar Pollut Bull ; 192: 115088, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2327638

ABSTRACT

Personal protective equipment (PPE) use has increased because of COVID-19, producing more microplastics (MPs). The pandemic's impact on MP pollution in Indian rivers is little understood. In this study, the Netravathi River in Karnataka was investigated for the spatiotemporal distribution of MPs. The MPs abundance, size, and categories varied seasonally, with a higher concentration during the monsoon seasons. The reduction in rainfall during MON20 and the COVID-19 lockdown can be the reasons for the significant decrease in the MP concentration when compared to MON19. Polyethylene and polyethylene terephthalate were the most abundant polymers, with a shift from polyethylene to the latter (74 %) during post-monsoon season post-lockdown. The situation of MP pollution in Western Ghats can be mitigated with the aid of appropriate waste management of plastic trash and greater public awareness about the disposal of single-use plastics, which has risen significantly during the COVID-19 pandemic.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Humans , Microplastics , Plastics , Rivers , Pandemics , India/epidemiology , COVID-19/epidemiology , Communicable Disease Control , Polyethylene , Environmental Monitoring , Water Pollutants, Chemical/analysis
3.
Pisevye Sistemy ; 6(1):11-21, 2023.
Article in Russian | Scopus | ID: covidwho-2317519

ABSTRACT

Products of the polymer industry, the lion's share of which is food packaging, create a significant threat to the en-vironment, which requires a search for the most effective and functional solutions to this problem. Every year, the production of polymer packaging is growing by an average of 10-12%, and last year, due to the worldwide spread of SARS-CoV-2 (COVID-19) and its strains, the increase was more than 20%. A solution to the environmental problem is possible using the main basic approaches: disposal and recycling of waste, which will give the pos-sibility of the "second life” to already used polymers;development and creation of new biodegradable materials capable of degrading completely under the influence of external factors into relatively safer substances. However, it should be noted that the first method has a number of significant drawbacks associated with the difficulty in controlling the amount of recycling processes carried out, which can potentially lead to an increase in migration processes from polymeric materials. The second way to solve the environmental problem of packaging disposal and recycling is the direction associated with the creation of polymeric materials with the replacement of part of the traditional commercial synthetic bases with organic and inorganic fillers in various concentrations. However, the most promising way to handle packaging waste, in our opinion, is the development of technologies aimed at creating fully biodegradable materials with a regulated service life, which, after their life cycle, are disposed of in a short time without harming the environment. This review is devoted to the analysis of the market of modern biodegradable materials and methods for obtaining degradable compositions that can become a significant alternative to traditional plastics. © Myalenko D. M., 2023.

4.
TrAC - Trends in Analytical Chemistry ; 162 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2293300

ABSTRACT

Biomarker detection has attracted increasing interest in recent years due to the minimally or non-invasive sampling process. Single entity analysis of biomarkers is expected to provide real-time and accurate biological information for early disease diagnosis and prognosis, which is critical to the effective disease treatment and is also important in personalized medicine. As an innovative single entity analysis method, nanopore sensing is a pioneering single-molecule detection technique that is widely used in analytical bioanalytical fields. In this review, we overview the recent progress of nanopore biomarker detection as new approaches to disease diagnosis. In highlighted studies, nanopore was focusing on detecting biomarkers of different categories of communicable and noncommunicable diseases, such as pandemic COVID-19, AIDS, cancers, neurologic diseases, etc. Various sensitive and selective nanopore detecting strategies for different types of biomarkers are summarized. In addition, the challenges, opportunities, and direction for future development of nanopore-based biomarker sensors are also discussed.Copyright © 2023 Elsevier B.V.

5.
Buildings ; 13(4):919, 2023.
Article in English | ProQuest Central | ID: covidwho-2294825

ABSTRACT

Plastic waste causes severe environmental impacts worldwide and threatens the lives of all creatures. In the medical field, most of the equipment, especially personal protective equipment (PPE), is made from single-use plastic. During COVID-19, the usage of PPE has increased, and is disposed of in landfills after being used once. Worldwide, millions of tons of waste syringes are generated from COVID-19 vaccination. A practical alternative to utilizing this waste is recycling it to reinforce building materials. This research introduces an approach to using COVID-19 syringe plastic waste to reinforce building material as composite concrete. Reinforced fiber polymer (FRP) concrete materials were used to mold cylindrical specimens, which underwent mechanical tests for mechanical properties. This study used four compositions with 0%, 5%, 10%, and 15% of FRP to create cylindrical samples for optimum results. Sequential mechanical tests were carried out on the created samples. These specimens were cured for a long period to obtain water absorption capability. After several investigations, the highest tensile and compressive strengths, approximately 2.0 MPa and 10.5 MPa, were found for the 5% FRP composition samples. From the curing test, the lowest water absorbability of around 5% was found for the 5% FRP composition samples.

6.
12th International Conference on Manufacturing Engineering and Processes, ICMEP 2022 ; : 11-23, 2023.
Article in English | Scopus | ID: covidwho-2275051

ABSTRACT

The world is currently experiencing a crisis, caused by SARS-CoV-2 and a viral mutation. Given this, the mechatronic system is proposed that allows disinfecting contaminated surfaces. This device makes it possible to disinfect polyethylene terephthalate (PET) bottles by applying short-wave UVC rays from 200 to 280 nm, which generates a germicidal effect. The machine consists of a UVC chamber, transport, and a control system. For this, the methodology of the Association of German Engineers (VDI 2206) was used, taking into account the Inventor, TIA Portal, and Factory IO software, managing to develop the system whose light-emitting diodes inside the camera project type C ultraviolet light, camera protected by strips of plastic sheet (ABS) acrylonitrile butadiene styrene anti-ultraviolet light that blocks the projection wave up to 98% of the radiation;the recycled PET bottles are moved through a linear conveyor belt that supports a maximum weight of 200 kg, controlled by a control panel. Obtaining the results in this research focused on the design of the prototype, with a feasible structural system thanks to its maximum efficiency in the disinfection process. It is concluded that it is feasible to design a machine that projects ultraviolet rays to disinfect recycled PET bottles to eliminate viruses, parasites, fungi, and bacteria. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

7.
Nanocomposites ; 8(1):13-23, 2022.
Article in English | ProQuest Central | ID: covidwho-2271668

ABSTRACT

Membrane materials might be used for face protection because they can decontaminate the inhaled air from particle pollution and viruses like the SARS-Cov0-2 which damages our respiration system. In this study, plyethersulfone membranes (PES) were synthesized with green solvent at room temperature and its filtration effectiveness was investigated against nano-bacteria (size 0.05 to 0.2 µm) by measuring their Bacterial Filtration Efficiency (BFE) and micro aerosol size (0.3 µm), and Particulate Filtration Efficiency (PFE). The average SARS-CoV-2 diameters are between 50 nm to 160 nm. A series of experiments were performed to accomplish between 0.03 to 0.21 µm PES sponge like diameters so that can be used for SARS-CoV-2 filtration. Results showed that nanofiltration/ultrafiltration could filter 99.9% of bacteria and aerosol from contaminated air the size of the Covid-19 molecule.

8.
Environ Sci Pollut Res Int ; 30(13): 36325-36336, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2280437

ABSTRACT

The current work focuses on designing a low-cost, reusable, and highly efficient facemask for protection from respiratory droplets that cause COVID-19, other infection-causing organisms, and dust allergies. Several masks available in the market are single-use that would choke the environment through plastic pollution or are expensive for the commoner to afford. In the present study, the facemask incorporates a waste-derived polyethylene terephthalate (PET) layer and a non-woven polypropylene (PP) layer sandwiched between two tightly woven cotton layers. Combining these layers provides comfort and breathability, besides high bacterial and particulate filtration efficiency. Moreover, the unique PET layer provides mechanical strength and a 3D shape that enables hindrance-free speaking and prevents spectacle fogging. Compared to commercial N95 masks, the developed mask can be reused up to 30 washes and recycled with zero waste discharge ensuing green technology. Moreover, the mask was produced at an affordable cost of Rs. 17 (0.22 USD), including labor charges, and sold at a 100% profit margin @ Rs.35 (0.45 USD) per unit. Further, the mask was certified by neutral testing agencies and provided to a population of more than 6 lakhs, thus significantly contributing to the mitigation of COVID-19.


Subject(s)
COVID-19 , Masks , Humans , Plastics , Textiles , Polyethylene Terephthalates , Preventive Health Services
9.
Journal of Hazardous Materials ; 443, 2023.
Article in English | Scopus | ID: covidwho-2242953

ABSTRACT

This study focuses on characterizing microplastics and non-microplastics released from surgical masks (SMs), N95 masks (N95), KN95 masks (KN95), and children's masks (CMs) after simulating sunlight aging. Based on micro-Raman spectrum analysis, it was found that the dominant particles released from masks were non-microplastics (66.76–98.85%). Unfortunately, CMs released the most microplastics, which is 8.92 times more than SMs. The predominant size range of microplastics was 30–500 µm, and the main polymer types were PP and PET. Compared with the whole SMs, the microplastic particles released from the cutting-SMs increased conspicuously, which is 12.15 times that of the whole SMs. The main components of non-microplastics include β-carotene, microcrystalline cellulose 102, and eight types of minerals. Furthermore, non-microplastics were mainly fibrous and fragmented in appearance, similar to the morphology of microplastics. After 15 days of UVA-aging, the fibers of the face layers had cracks to varying degrees. It was estimated that these four types of masks can release at least 31.5 trillion microplastics annually in China. Overall, this study demonstrated that the masks could release a large quantity of microplastics and non-microplastics to the environment after sunlight aging, deserving urgent attention in the future study. © 2022 Elsevier B.V.

10.
Heliyon ; 9(2): e13349, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2233799

ABSTRACT

A face shield is a secondary personal protective equipment (PPE) for healthcare workers (HCW). Worn with the appropriate face masks/respirators, it provides short term barrier protection against potentially infectious droplet particles. Coronavirus disease 2019 (COVID-19) caused a spike in demand for PPE, leading to a shortage and risking the safety of HCW. Transport restrictions further challenged the existing PPE supply chain which has been reliant on overseas-based manufacturers. Despite the urgency in demand, PPE must be properly tested for functionality and quality. We describe the establishment of local face shields manufacture in Western Australia to ensure adequate PPE for HCW. Ten thousand face shields for general use (standard) and for ear, nose and throat (ENT) specialist use were produced. Materials and design considerations are described, and the face shields were vigorously tested to the relevant Standards to ensure their effectiveness as a protective barrier, including splash and impact resistance. Comparative testing with traditional and other novel face shields was also undertaken. Therapeutic Goods Administration (TGA) licence was obtained to manufacture and supply the face shields as a Class I medical device. The swiftness of process is a credit to collaboration from industry, academia and healthcare.

11.
Saudi J Biol Sci ; 30(3): 103583, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2221365

ABSTRACT

Plastic pollution is a global issue and has become a major concern since Coronavirus disease (COVID)-19. In developing nations, landfilling and illegal waste disposal are typical ways to dispose of COVID-19-infected material. These technologies worsen plastic pollution and other human and animal health problems. Plastic degrades in light and heat, generating hazardous primary and secondary micro-plastic. Certain bacteria can degrade artificial polymers using genes, enzymes, and metabolic pathways. Microorganisms including bacteria degrade petrochemical plastics slowly. High molecular weight, strong chemical bonds, and excessive hydrophobicity reduce plastic biodegradation. There is not enough study on genes, enzymes, and bacteria-plastic interactions. Synthetic biology, metabolic engineering, and bioinformatics methods have been created to biodegrade synthetic polymers. This review will focus on how microorganisms' degrading capacity can be increased using recent biotechnological techniques.

12.
Fermentation ; 9(1):18, 2023.
Article in English | ProQuest Central | ID: covidwho-2215746

ABSTRACT

In the present study, selenium nanoparticles were synthesized in situ on alkali-activated cotton fabric using guava leaf extract as a reducing agent. The synthesis was monitored by a change in color of fabric from white to light brick red. The UV-DRS analysis confirms the coating of Se NPs on cotton. The XRD, FT-IR, and SEM-EDX characterization techniques were used to analyze the nanoparticles on cotton fabric. The peak at 788 cm−1 in FT-IR confirms the formation of Se NPs on cotton fabric. The XRD analysis confirms that the average crystallite size of as-prepared nanoparticle is ~17 nm. SEM-EDX analysis shows the successful coating of Se NPs on coated fabric. ICP-OES studies confirm 3.65 mg/g of selenium nanoparticles were present on the fabric. The Se-coated-30 showed a larger zone of inhibition against Gram-positive S. aureus (32 mm) compared to Gram-negative strains of E. coli (16 mm) and K. pneumoniae (26 mm). The fabric was also tested against the fungi C. glabrata (45 mm), C. tropicalis (35 mm), and C. albicans (35 mm) and results indicate it is more effective against fungal compared to bacterial strains. The coated fabric inhibits biofilm formation of C. albicans (99%), S. aureus (78%), and E. coli (58%). The results demonstrated excellent antibacterial, antifungal, and antibiofilm activities of the Se-coated-30. The prepared fabric has the potential to be used in medicinal applications and is both ecofriendly and cost effective.

13.
Int J Mol Sci ; 23(18)2022 Sep 11.
Article in English | MEDLINE | ID: covidwho-2032985

ABSTRACT

The nano-metal-treated PET films with anti-virus and anti-fogging ability were developed using sparking nano-metal particles of Ag, Zn, and Ti wires on polyethylene terephthalate (PET) films. Ag nanoparticles were detected on the PET surface, while a continuous aggregate morphology was observed with Zn and Ti sparking. The color of the Ag-PET films changed to brown with increasing repeat sparking times, but not with the Zn-PET and Ti-PET films. The water contact angle of the nano-metal-treated PET films decreased with increasing repeat sparking times. The RT-PCR anti-virus test confirmed the high anti-virus efficiency of the nano-metal-treated PET films due to the fine particle distribution, high polarity, and binding of the nano-metal ions to the coronavirus, which was destroyed by heat after UV irradiation. A highly transparent, anti-fogging, and anti-virus face shield was prepared using the Zn-PET film. Sparking was an effective technique to prepare the alternative anti-virus and anti-fogging films for medical biomaterial applications because of their low cost, convenience, and fast processing.


Subject(s)
Coronavirus , Metal Nanoparticles , Biocompatible Materials/chemistry , Metal Nanoparticles/chemistry , Polyethylene Terephthalates/chemistry , Silver/chemistry , Surface Properties , Water
14.
Recycling ; 7(4):44, 2022.
Article in English | ProQuest Central | ID: covidwho-2024017

ABSTRACT

A dramatic increase in plastic waste has resulted in a strong need to increase plastic recycling accordingly. A selective flotation has been highlighted due to its outstanding efficiency for the separation of mixed plastics with analogous physicochemical characteristics. In this study, the effects of design and operational factors on the bubble’s hydrodynamic and mixing parameters in induced air flotation (IAF) with a mixing device were investigated through a design of experiment method (DOE) analysis for improving the plastic separation efficiency (i.e., PS and ABS). As a result of DOE analysis, the increase in the induced air tube diameter together with the rotational speed could generate a smaller bubble size. This led to the enhancement of the ratio of interfacial area to velocity gradient (a/G), which was interestingly found to be a significant factor affecting plastic recovery apart from the chemical agents. It demonstrates that operating IAF with a mixing device at a greater a/G ratio improved the plastic separation performance. These findings suggest that operating an IAF process with a mixing device at suitable a/G conditions could be a promising technique for separating plastic wastes, which have similar physicochemical characteristics as PS and ABS.

15.
SciDev.net ; 2022.
Article in English | ProQuest Central | ID: covidwho-1999659

ABSTRACT

Speed read Bottled water sales fell during lockdowns in the Asia Pacific Sales began to rise again after COVID-19 restrictions eased Plastic pollution from bottled water is a growing concern [MANILA] Measures to contain the spread of COVID-19 caused a decline in the sales of bottled water across the Asia Pacific region during 2020, according to a study by the global market research firm, Euromonitor International. The region has historically accounted for the largest share of bottled water sales, driven by rising health and wellness awareness and a lack of access to safe water, Euromonitor said in a report. [The] presence of diseases other than COVID-19 will be counted as comorbidity that will complicate the health of the persons with COVID-19,” he told SciDev.Net. [...]the early 1990s Filipinos relied on drinking water from the tap but that changed as consumers started to observe deteriorating water quality, Magtibay said.

16.
Polymers (Basel) ; 14(15)2022 Aug 06.
Article in English | MEDLINE | ID: covidwho-1994129

ABSTRACT

As the demand for plastics only increases, new methods are required to economically and sustainably increase plastic usage without landfill and environmental accumulation. In addition, the use of biofillers is encouraged as a way to reduce the cost of the final resin by incorporating agricultural and industrial waste by-products, such as rice hulls and coffee chaff to further reduce waste being sent to landfills. Crystalline poly(ethylene terephthalate) (CPET) is a resin commonly used for microwave and ovenable food packaging containers that have not been fully explored for recycling. In this article, we investigate how the incorporation of biofillers at 5% wt. and 10% wt. impacts critical polymer properties. The thermal and mechanical properties were not significantly altered with the presence of rice hulls or coffee chaff in the polymer matrix at 5% wt. loading, but some reduction in melt temperature, thermal stability, and maximum stress and strain was more noticed at 10% wt. The complex viscosity was also reduced with the introduction of biofillers. The levels of heavy metals of concern, such as Cd, Cr, and Pb, were below the regulatory limits applicable in the United States and Europe. Additional studies are suggested to improve the performance of CPET/biofiller blends by pre-treating the biofiller and using compatibilizers.

17.
Journal of Environmental Chemical Engineering ; 10(4), 2022.
Article in English | Scopus | ID: covidwho-1945561

ABSTRACT

Advancements in polymer science and engineering have helped the scientific community to shift its attention towards the use of environmentally benign materials for reducing the environmental impact of conventional synthetic plastics. Biopolymers are environmentally benign, chemically versatile, sustainable, biocompatible, biodegradable, inherently functional, and ecofriendly materials that exhibit tremendous potential for a wide range of applications including food, electronics, agriculture, textile, biomedical, and cosmetics. This review also inspires the researchers toward more consumption of biopolymer-based composite materials as an alternative to synthetic composite materials. Herein, an overview of the latest knowledge of different natural- and synthetic-based biodegradable polymers and their fiber-reinforced composites is presented. The review discusses different degradation mechanisms of biopolymer-based composites as well as their sustainability aspects. This review also elucidates current challenges, future opportunities, and emerging applications of biopolymeric sustainable composites in numerous engineering fields. Finally, this review proposes biopolymeric sustainable materials as a propitious solution to the contemporary environmental crisis. © 2022 Elsevier Ltd.

18.
Applied Sciences ; 12(11):5388, 2022.
Article in English | ProQuest Central | ID: covidwho-1892764

ABSTRACT

Featured ApplicationThis research aims at understanding the sources of plastic litter in a freshwater body, assessing the possible production of secondary microplastics (MPs).Plastic waste dispersion is a well-recognized environmental threat, despite continuous efforts towards improving waste disposal management over the last few decades. Plastic litter is known to strongly impact upon water bodies and shorelines, affecting the health of ecosystems and impacting upon the aesthetic value of sites. Moreover, plastic waste that is abandoned on beaches contributes towards different degradation processes that potentially lead to the formation of secondary microplastics (MPs), with likely cascade effects upon the whole ecosystem. In this view, this study aims to characterize the plastic beach litter found on the shores of the western basin of Como Lake (Italy) to better understand the origin of MPs in littoral sediments, including the recognition of object typologies and the chemical characterization of polymers using Fourier-transformed infrared analysis (FTIR). The results highlighted that the most abundant polymers on beaches are polypropylene (PP) and polyethylene (PE), representing 73% of the collected polymers. This confirms that floating, low-density polymers are more likely to accumulate on beaches. Moreover, almost 66% of litter is represented by commonly used manufactured items (disposable objects, packaging, and everyday items). This evidence, combined with the analysis of the main environmental features of the sampling sites (the main winds, distance to urban areas, and the presence of tributaries) indicate that abundance of beached litter is mainly linked to beach accessibility and the local winds. These results highlight that multiple factors affect the environmental fate of plastic litter and give insights into the assessment of secondary microplastics in beach sediments.

19.
Int J Mol Sci ; 23(10)2022 May 17.
Article in English | MEDLINE | ID: covidwho-1875644

ABSTRACT

The global utilization of single-use, non-biodegradable plastics, such as bottles made of polyethylene terephthalate (PET), has contributed to catastrophic levels of plastic pollution. Fortunately, microbial communities are adapting to assimilate plastic waste. Previously, our work showed a full consortium of five bacteria capable of synergistically degrading PET. Using omics approaches, we identified the key genes implicated in PET degradation within the consortium's pangenome and transcriptome. This analysis led to the discovery of a novel PETase, EstB, which has been observed to hydrolyze the oligomer BHET and the polymer PET. Besides the genes implicated in PET degradation, many other biodegradation genes were discovered. Over 200 plastic and plasticizer degradation-related genes were discovered through the Plastic Microbial Biodegradation Database (PMBD). Diverse carbon source utilization was observed by a microbial community-based assay, which, paired with an abundant number of plastic- and plasticizer-degrading enzymes, indicates a promising possibility for mixed plastic degradation. Using RNAseq differential analysis, several genes were predicted to be involved in PET degradation, including aldehyde dehydrogenases and several classes of hydrolases. Active transcription of PET monomer metabolism was also observed, including the generation of polyhydroxyalkanoate (PHA)/polyhydroxybutyrate (PHB) biopolymers. These results present an exciting opportunity for the bio-recycling of mixed plastic waste with upcycling potential.


Subject(s)
Microbial Consortia , Polyethylene Terephthalates , Bacteria/genetics , Bacteria/metabolism , Plasticizers , Plastics/metabolism
20.
Applied Sciences ; 12(10):5122, 2022.
Article in English | ProQuest Central | ID: covidwho-1870863

ABSTRACT

This study took food-grade polypropylene packaging products as the research project and discussed how to control the polypropylene extrusion sheet thickness and vacuum thermoforming quality and weight. The research objective was to find the key factors for reducing costs and energy consumption. The key aspects that may influence the polypropylene extrusion molding quality control were analyzed using literature and in-depth interviews with scholars and experts. These four main aspects are (1) key factors of polypropylene extrusion sheet production, (2) key factors of the extrusion line design, (3) key factors of polypropylene forming and mold manufacturing, and (4) key factors of mold and thermoforming line equipment design. These were revised and complemented by the scholar and expert group. There are 49 subitems for discussion. Thirteen scholars and experts were invited to use qualitative and quantitative research methods. A Delphi questionnaire survey team was organized to perform three Delphi questionnaire interviews. The statistical analyses of encoded data such as the mean (M), mode (Mo), and standard deviation (SD) of various survey options were calculated. Seeking a more cautious research theory and result, the K-S simple sample test was used to review the fitness and consistency of the scholars’ and experts’ opinions on key subitem factors. There are ten key factors in the production quality, including “A. Main screw pressure”, “B. Polymer temperature”, “C. T-die lips adjustment thickness”, “D. Cooling rolls pressing stability”, “E. Cooling rolls temperature stability”, “F. Extruder main screw geometric design”, “G. Heating controller is stable”, “H. Thermostatic control”, “I. Vacuum pressure”, and “J. Mold forming area design”. The key factors are not just applicable to classical polypropylene extrusion sheet and thermoforming production but also to related process of extrusion and thermoforming techniques in expanded polypropylene (EPP) sheets and polylactic acid (PLA). This study aims to provide a key technical reference for enterprises to improve quality to enhance the competitiveness of products, reduce production costs, and achieve sustainable development, energy savings, and carbon reductions.

SELECTION OF CITATIONS
SEARCH DETAIL